Genome-wide survey of tissue-specific microRNA and transcription factor regulatory networks in 12 tissues
نویسندگان
چکیده
Tissue-specific miRNAs (TS miRNA) specifically expressed in particular tissues play an important role in tissue identity, differentiation and function. However, transcription factor (TF) and TS miRNA regulatory networks across multiple tissues have not been systematically studied. Here, we manually extracted 116 TS miRNAs and systematically investigated the regulatory network of TF-TS miRNA in 12 human tissues. We identified 2,347 TF-TS miRNA regulatory relations and revealed that most TF binding sites tend to enrich close to the transcription start site of TS miRNAs. Furthermore, we found TS miRNAs were regulated widely by non-tissue specific TFs and the tissue-specific expression level of TF have a close relationship with TF-genes regulation. Finally, we describe TSmiR (http://bioeng.swjtu.edu.cn/TSmiR), a novel and web-searchable database that houses interaction maps of TF-TS miRNA in 12 tissues. Taken together, these observations provide a new suggestion to better understand the regulatory network and mechanisms of TF-TS miRNAs underlying different tissues.
منابع مشابه
Genome-wide promoter analysis of the SOX4 transcriptional network in prostate cancer cells.
SOX4 is a critical developmental transcription factor in vertebrates and is required for precise differentiation and proliferation in multiple tissues. In addition, SOX4 is overexpressed in many human malignancies, but the exact role of SOX4 in cancer progression is not well understood. Here, we have identified the direct transcriptional targets of SOX4 using a combination of genome-wide locali...
متن کاملTissue-specific regulatory network extractor (TS-REX): a database and software resource for the tissue and cell type-specific investigation of transcription factor-gene networks
The prediction of transcription factor binding sites in genomic sequences is in principle very useful to identify upstream regulatory factors. However, when applying this concept to genomes of multicellular organisms such as mammals, one has to deal with a large number of false positive predictions since many transcription factor genes are only expressed in specific tissues or cell types. We de...
متن کاملmirConnX: condition-specific mRNA-microRNA network integrator
mirConnX is a user-friendly web interface for inferring, displaying and parsing mRNA and microRNA (miRNA) gene regulatory networks. mirConnX combines sequence information with gene expression data analysis to create a disease-specific, genome-wide regulatory network. A prior, static network has been constructed for all human and mouse genes. It consists of computationally predicted transcriptio...
متن کاملConstruction and Analysis of Tissue-Specific Protein-Protein Interaction Networks in Humans
We have studied the changes in protein-protein interaction network of 38 different tissues of the human body. 123 gene expression samples from these tissues were used to construct human protein-protein interaction network. This network is then pruned using the gene expression samples of each tissue to construct different protein-protein interaction networks corresponding to different studied ti...
متن کاملUnsupervised Learning in Genome Informatics
With different genomes available, unsupervised learning algorithms are essential in learning genome-wide biological insights. Especially, the functional characterization of different genomes is essential for us to understand lives. In this book chapter, we review the state-of-the-art unsupervised learning algorithms for genome informatics from DNA to MicroRNA. DNA (DeoxyriboNucleic Acid) is the...
متن کامل